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Abstract. In the data mining field, data representation turns out to be one of
the major factors affecting mining algorithm scalability. Mining Frequent Itemsets
(MFI) is a data mining problem that is heavily affected by this fact. The vertical
approach is one of the successful data representations adopted for MFI problem.
The main advantage of this approach is support for fast frequency counting via join-
ing operations. Recently, an encoding method called prime-encoding is proposed as
an enhancement for the vertical approach [10]. The performance study introduced
in [10] confirmed the high quality of prime-encoding based vertical mining of fre-
quent sequence over other vertical and horizontal ones in terms of space and time.
Though sequence mining is more general than itemset mining, this paper presents
a prime-encoding based vertical mining of frequent itemsets with new optimizations
and a new re-encoding method that further enhance memory and speed. The exper-
imental results show that prime encoding based vertical itemset mining is suitable
for high-dimensional sparse data.
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1 INTRODUCTION

Mining Frequent Itemsets (MFI) is a fundamental and essential problem in many
data mining applications, including market and customer analysis, mining web logs,
patterns discovery in protein sequences, and so on. The problem is formulated as
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follows: Given a set of item transactions, find all frequent itemsets, where a frequent
itemset occurs in at least a user specified percentage of the data.

Several efficient and scalable algorithms have been proposed in the previous
studies, ranging from mining frequent itemsets [3, 15, 1, 11, 16, 19, 20], with and
without constraints, to mining closed and maximal itemsets [6, 12, 5, 13, 7, 9, 21, 18].
Most of the existing methods follow implicitly or explicitly the same search and
pruning strategies, that are often depth or breadth first search with pruning mostly
based on the downward closure property [3]. Indeed, the variant performance of
current methods is due to the way of how each method represents data and counts
pattern frequency. Generally, there are two main data representation approaches
referred to as the horizontal and the vertical approaches. In the horizontal data
representation, the data set consists of a list of tuples called transactions, where
each transaction has an identifier called tid (tid stands for transaction id), followed
by a list of items in that transaction. In the vertical data representation, two data
formats are often used, tidsets and bitmaps. In tidset format, each data item is
associated with its corresponding tidset, the set of all tids where it appears, whereas
in bitmap, a bit is used for each transaction. The bit is set to one if the item appears
in the corresponding transaction whereas zero is used to register the item absence.

In this paper, we focus on the vertical format, in particular its performance on
sparse data. The main advantage of the tidset format is that tidsets offer natu-
ral pruning of irrelevant transactions as a result of joining (tids not relevant drop
out) [19]. Thus, when the original and intermediate relevant data is very small as in
sparse domains, tidset becomes one of the most efficient data representations. The
bitmap format, on the other hand, suffers from the problem of sparseness of the
bitmaps especially at lower support levels as always occurs for sparse data, though
on new 64 bit-based computer systems joining bitmaps becomes very fast.

Can vertical-based algorithms be enhanced further for sparse data? Recently,
an encoding method called Prime-block Encoding is proposed as an enhancement
for the vertical approach [10]. The primal structure is a very elegant structure and
is much more compact than bitmap and tidset. In addition, it combines the virtues
of both formats – irrelevant data drops out as early as possible as a result of joining
as in tidsets and joining is performed very fast as in bitmap. The performance
study presented in [10] confirmed the high quality of prime-encoding based vertical
mining of frequent sequence over other vertical and horizontal ones in terms of
space and time. Though sequence mining is more general than itemset mining, this
paper presents a prime-encoding based vertical mining of frequent itemsets with
new optimizations and a new re-encoding method that further enhance memory
and speed.

A systematic performance study is reported to verify the performance gain
claimed by these new optimizations. To do so, the prime-encoding is integrated
with Eclat [19], the state-of-the-art tidset-based frequent itemset mining method.
Our enhancement is called P Eclat. The experimental results show that the prime-
encoding with the new optimizations deliver more than 4 times performance im-
provement over the tidset-based mining on sparse data.
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The rest of this paper is organized as follows. The problem of Mining Frequent
Itemsets and preliminary work are presented in Section 2. Section 3 is devoted
to P Eclat algorithm and the new optimizations. The related work is discussed in
Section 4. The experimental results are reported in Section 5. Section 6 concludes
the paper.

2 PRELIMINARIES

2.1 Problem Definition

Let I = {i1, . . . , im} be a set of items, and D = {T1, T2, . . . , TN} a set of tuples called
transactions, where each transaction Ti has a unique identifier (tid) and contains
a set of items. Let T = {1, 2, . . . , N} be the the set of tids in D, a set X ⊆ I is
called an itemset, and a set of tids Y ⊆ T is called a tidset. An itemset with k items
is called a k-itemset. For convenience we write an itemset {A,C,W} as ACW , and
a tidset {2, 4, 5} as 245. A transaction Ti is said to contain an itemset X, if X is
a subset of Ti. The absolute support of an itemset X is defined as the number of data
transactions that contain X, and the relative support is defined as the percentage
of data transactions that contain X. Without loss of generality, we use the absolute
support in the rest of the paper while in experimental study the relative support
is often used. The support of itemset X in a data set D is denoted by supD(X).
Given a support threshold min sup, itemset X is frequent in a data set D if X is
contained by at least min sup transactions of D. The problem of Mining Frequent
Itemsets is to find all frequent itemsets in a data set D, given a support threshold
min sup.

tid T

1 ABE
2 BD
3 BC
4 ABD
5 AC
6 BC
7 AC
8 ABCE
9 ABC

Table 1. Horizontal data D

Example 1. As an example, consider the transaction data set D shown in Table 1.
It consists of 9 transactions, and there are five items used, i.e., I = {A,B,C,D,E}.
Suppose min sup = 2. The 2-itemset BD is frequent since it is contained in the
second and fourth tuples of D.
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Search Space. The search space for enumeration of all frequent itemsets is given
by the power set P(I) which is exponential (2|I|) in the number of items. Figure 1
shows an example of a complete itemset search tree for I = {A,B,C,D,E}. The
root is the null itemset and each lower level k contains all of the k-itemsets, which
are ordered lexicographically. Notice from the figure that the itemset search tree
is huge even with very few data items. The factors which make mining frequent
itemsets feasible is that the real data instances comprise of short transactions. This,
indeed, bounds the deepest levels at which mining will be stopped. The uncrossed
nodes of the tree represent the frequent itemsets of the example data given in Table 1
with the deepest level being at most 3. Pruning is also used to cut the search space
that should be considered. For example, support-based ordering of tree nodes and
the downward closure property1 help to narrow down the search space and prune
unnecessary branches.

A {B,C, D, E}

AB {C,D, E}                         AC {D, E} AE

ABE

ACDE

ADE

BCDE

BDE

{} {A, B,C, D, E}

C{D,E}

CD{E} CE

CDE

D{E}

DE

E

      BD{E} BE

  BCE BCD{E}

 AD{E}

ABC{D,E}

ABDEABCE

ABCDE

ABCD{E}

ACD ACE

BC{D,E}

    B{C,D, E}

ABD{E}

Figure 1. Subset search tree

2.2 Common Data Formats

The data format given in Table 1 is the traditional horizontal data representation.
Vertical format is another data representation used. Two variant of the vertical
representation are tidset and bitmap. In the tidset format, we maintain for each
item its tidset, a set of all tids where it occurs, whereas in bitmap, a bit is used
for each transaction. The bit is set to one if the item appears in the corresponding
transaction whereas zero is used to register the item absence. For each item il ∈ I,

1 the property that all subsets of a frequent itemset must themselves be frequent.
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let t(il) denote its tidset and b(il) denote its bitmap. Table 2 and Table 3 show
tidset and bitmap formats, respectively. Methods using horizontal format include
Apriori [1], MaxMiner [6] and DepthProject [5]. Methods based on vertical tidset
format include Eclat [19], Charm [21], and Partition [15]. Methods based on vertical
bitmap format include Viper [16] and Mafia [7, 8]. Our main focus is to improve
the methods that utilize the vertical format for sparse data.

t(A) t(B) t(C) t(D) t(E)

1 1 3 2 1
4 2 5 4 8
5 3 6
7 4 7
8 6 8
9 8 9

9

Table 2. Vertical data: tidset

tid b(A) b(B) b(C) b(D) b(E)

1 1 1 0 0 1
2 0 1 0 1 0
3 0 1 1 0 0
4 1 1 0 1 0
5 1 0 1 0 0
6 0 1 1 0 0
7 1 0 1 0 0
8 1 1 1 0 1
9 1 1 1 0 0

Table 3. Vertical data: bitmap

2.3 Frequency Counting

Each node in the subset search tree can be treated as a prefix itemset, from which
the set of its children can be generated by adding one item from I. Because we
are only interested in mining frequent itemsets, according to the downward closure
property, we only need to grow a prefix itemset using the set of its locally frequent
items. Two ways are presented in the literature to determine the prefix locally
frequent items. Suppose the prefix is at level k, i.e., it is a k−itemset. The first way
is to determine locally frequent items from the frequent itemsets at the prefix level,
i.e., from frequent k−itemsets. They are the suffix items of those itemsets sharing
the prefix in all its first k− 1 itemes, in the same order. The class of these itemsets
is referred to as the prefix equivalence class [19]. For example, the items C and E
are the locally frequent items that are used for extending the prefix AB. Another
way is presented in [11, 5] and explained below.
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Vertical Counting. In vertical-based methods, the generated itemset is tested
against the data set through constructing its corresponding vertical structure. Let
X = Pxi

2 be a prefix itemset and xj be the locally frequent item used for ex-
tending X. The corresponding tidset of the generated itemset Xxj is constructed
through intersection on transaction ids of the two tidsets t(Pxi) and t(Pxj), i.e.,
t(Xxj) = t(Pxi)∩ t(Pxj), if the equivalence class approach is used [19] or t(Xxj) =
t(X) ∩ t(xj) otherwise. On the other hand, bitwise AND (∧) on the corresponding
bitmaps is enough to get b(Xxj). The new itemset support is given by the number
of distinct tids in the corresponding tidset, or the number of ones if bitmaps are
used.

Horizontal Counting. Horizontal-based algorithms, on the other hand, use data
scans for this task. In the first generation of horizontal algorithms – itemsets gene-
ration is based on breadth first traversal – full scans of the entire data are used to
evaluate the support of generated k-itemsets [3, 4, 1, 17, 6]. In the second generation
of horizontal algorithms – algorithms are based on depth first traversal – algorithms
utilize proper data projection to reduce the size of the data to be scanned [5, 11].
Data projection means that, during search, the transactions containing the given
prefix itemset X are collected to form the X-projected data. Then, the further
search of larger itemsets can be achieved by searching only the X-projected data. In
order to get the frequent extensions of X, the X-projected data is scanned to count
the locally frequent items with respect to X which can be used to grow prefix X in
order to get longer frequent itemsets. Then, the X-projected data is reprojected for
every extension.

2.4 Prime Block Encoding

Recently, an encoding method called Prime-block Encoding is proposed as an en-
hancement for the vertical approach [10]. The method is explained as follows. Given
T = [1 : N ] = {1, 2, . . . , N}, the set of tids in the data set D, and let G be a base
set of prime numbers sorted in increasing order. Without loss of generality as-
sume that N is a multiple of |G|, i.e., N = m · |G|. Let B ∈ {0, 1}N be a binary
vector of length N . Then B can be partitioned into m = N

|G| consecutive blocks,

where each block Bi = B [(i− 1) · |G|+ 1 : i · |G|], with 1 ≤ i ≤ m. In fact, each
Bi ∈ {0, 1}|G|, can be thought of as an indicator vector, representing subsets of G.
Let G[j] denote the jth prime in G. Define the value of Bi with respect to G as fol-
lows: ν(Bi, G) = ⊗{G[j]Bi[j]}. For example, if Bi = 1001, and G = {2, 3, 5, 7}, then
ν(Bi, G) = 21 ·30 ·50 ·71 = 2 ·7 = 14. Note also that if Bi = 0000 then ν(Bi, G) = 1.
Define ν(B,G) = {ν(Bi, G) : 1 ≤ i ≤ m}, as the primal block encoding of B with
respect to the base prime set G. It should be clear that each ν(Bi, G) ∈ P (G), the
power set of G. Note that when there is no ambiguity, we write ν(Bi, G) as ν(Bi),
and ν(B,G) as ν(B). As an example, let T = {1, 2, . . . , 12}, G = {2, 3, 5, 7}, and

2 xi is a single item and P is an itemset, where |P | ≥ 0
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B = 100111100100. Then there are m = 12/4 = 3 blocks, B1 = 1001, B2 = 1110
and B3 = 0100. We have ν(B1) = ⊗SG(B1) = ⊗{2, 7} = 2 · 7 = 14, and the primal
block encoding of B is given as ν(B) = {14, 30, 3}. Define ones(B) to be the number
of 1’s in the binary vector B. For example ones(100111100100) = 6.

p(A) p(B) p(C) p(D) p(E)

14 210 5 21 2
70 21 210 1 7
2 2 2 1 1

Table 4. Vertical data: primal structure

t(AB) b(AB) p(AB)

1 1 14
4 0 7
8 0 2
9 1

0
0
0
1
1

Table 5. Joining tidsets, bitmaps and primal block structures

Table 4 shows the vertical primal block encoding format of the example data
given at Table 1. Note that the primal structure is compact, for example, |p(B)| = 3
integers, whereas |t(B)| = 7. Given two integers a and b. Let gcd(a, b) denote the
greatest common divisor of the two numbers a and b. The following theorem presents
a way to join primal block encoding structures and get the number of ones of the
generated structure.

Theorem 1. Let G be the base prime set, and let A = A1A2 · · ·Am, and B =
B1B2 · · ·Bm be any two binary vectors in {0, 1}N , with N = m · |G|, and Ai, Bi ∈
{0, 1}|G|. Then ν(A ∩ B) = {gcd(ν(Ai), ν(Bi)) : 1 ≤ i ≤ m}, and ones(A ∩ B) =∑

i ‖gcd(ν(Ai), ν(Bi))‖G.

Continuing our example above, let A = 100011111000, then ν(A ∩ B) =
ν(100011100000) = {ν(1000), ν(1110), ν(0000)} = {2, 30, 1}. Note that ν(A) =
{2, 210, 2}, and ν(B) = {14, 30, 5}. Applying the above theorem, we have ν(A∩B) =
{gcd(2, 14), gcd(210, 30), gcd(2, 1)} = {2, 30, 1}, which matches the direct computa-
tion. Also ones(A ∩ B) = ‖2‖G + ‖30‖G + ‖1‖G = 1 + 3 + 0 = 4. Table 5 shows
the structures t(AB), b(AB) and p(AB) of the 2-itemset AB. These structures are
generated by joining those of itemsets A and B.
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3 P ECLAT ALGORITHM

We integrated the prime-encoding method with Eclat [19], the state-of-the-art tidset-
based frequent itemset mining method. Our enhancement is called P Eclat. P Eclat
is outlined in Algorithm 1. Details on new optimizations are given in the following
subsection. The P Eclat algorithm follows the equivalence class approach. It per-
forms a depth first search of the subset tree. The input to the procedure is a set
of class members for a subtree rooted at P . Frequent itemsets are generated by
joining primal structures of all distinct pairs of itemsets and checking the support
of the resulting itemset. A recursive procedure call is made with those itemsets
found to be frequent at the current level. This process is repeated until all frequent
itemsets have been enumerated. In terms of memory management, it is easy to
see that we need memory to store intermediate primal structures for at most two
consecutive levels within a class. Once all frequent itemsets at the next level have
been generated, the itemsets at the current level within a class can be deleted.

Algorithm 1: P Eclat(min sup, D)

Input: Transactional data set D, min sup.
Output: F : Frequent itemsets in D.

1. F1 = { frequent items or 1-itemsets }
2. F2 = { frequent 2-itemsets }
3. ξ = { equivalence classes [P ] }
4. for all [P ] ∈ ξ do Enumerate-Frequent-Itemsets([P ])
5.Procedure Enumerate-Frequent-Itemsets([P ])
6. for each Xi ∈ [P ] do
7. for each Xj ∈ [P ], with j > i do
8. R := Xi ∪Xj

9. p(R) := {gcd(p(Xi)l, p(Xj)l) : 1 ≤ l ≤ m}
10. σ(R) :=

∑
l ‖gcd(p(Xi)l, p(Xj)l)‖G

11. if σ(R) ≥ δ × |D| then
12. Fi := Fi ∪ {R} // Fi initially empty
13. if Fi 6= φ then Enumerate-Frequent-Itemsets(Fi)

3.1 Optimizations

3.1.1 Optimization 1: Removing Sparse Blocks

The primal structure size m is not fixed across all tree levels but it could be pro-
gressively decreased level by level as follows: If the prefix primal structure contains
l entries of ones (i.e., l sparse blocks), then those ones could be deleted at the next
level since it is assured that all structures which are formed using this prefix contain
those ones at the same positions3. Thus, all itemsets generated by the prefix will

3 gcd(1, x) = 1 for any integer x ≥ 0
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have primal structures of size m − l. For example, consider the prefix D of the
previous example; its primal structure p(D) contains ones at the second and third
positions. We can assign the new structure p(DE) size 1 instead of 3 since it is
guaranteed that its second and third elements will be ones and does not contribute
to the support of DE. Then p(DE) = {1}. This way we save more space during
computation.

3.1.2 Optimization 2: Building Initial Primal Structures

The initial primal structures can be computed from tidsets at any level of the search
tree. They could also be read from disk directly using a primal version of the data.
If we choose in the implementation to build primal structures for frequent items,
we may have structures longer than the corresponding tidsets. The size increase is
because each item’s primal structure contains many ones corresponding to the sparse
blocks, i.e., blocks of T where the item does not appear. Assume, for example, that
the minimum support is set to 1 in Example 1; then every item having this support
will be associated to a primal structure of size 3. Contrast this to the corresponding
tidsets of length 1. Generally, if |G| = 4, then all data items with support less
than 25 percent of the data have primal structures longer than their corresponding
tidsets. In sparse domains, most data items have this support bound.

Although the many ones existing in the prefix primal structure will be removed
from the next level primal structures according to optimization 1, we have decided
to construct the initial primal structures at the second tree level, i.e., for 2-itemsets.
The primitive way for doing this is to first get tidsets and then construct primal
structures from them using the primal encoding method. The resulting primal
structures will have the original size m but they may contain more ones than before.
Consider Example 1, p(AB) = {14, 7, 2} could be constructed directly from t(AB)
by applying the encoding ν instead of joining p(A) with p(B). The method adopted
in our implementation is the same as the primitive one but the difference is that we
do not actually build the second level tidsets in memory. The intersection is done
on the fly. We have also replaced the universal T = [1 : 12] in the transformation ν
by the new one T = [1 : 6] – the indices of the prefix tidset t(A). This is possible
since we are working with equivalence classes and the prefix tidset indices will be
the new universal set to the class instead of original T . As an example, consider
how to build p(AB). For each tid in the intersection t(AB), we get its position at
the prefix tidset t(A). This position has its corresponding prime number according
to the transformation ν with the new universal set. The positions of tids of t(AB)
at t(A) are 1, 2, 5 and 6, their equivalent prime numbers when |G| = 4 are 2, 3, 2,
and 3 according to the new ν. Then p(AB) = {6, 6}. Compare this primal structure
with the one derived before; the size here is 2 instead of 3.

Why primal encoding at the second level of the search tree speeds up mining?
Building second level primal structures contributes not only in removing sparse
blocks but in a high compression. At the second level, tidsets will be compressed
more than ever, since we build primal structures using the indices of prefix’s tidset.
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The maximum index value is equal to the prefix support; then every generated primal
structure will be of size at most dsup(a)/|G|e, where a is the prefix item. Compare
this size with d|T |/|G|e. In the case of sparse data, where |T | � sup(a),∀a, the
primal structure becomes very short. Sorting frequent items in increasing order of
support and building primal structures at the second tree level as the optimization 2
suggests will improve the storage.

3.1.3 Optimization 3: Re-Encoding

Primal block structure adds new advantages especially for sparse data to the vertical
tidset approach. First, it becomes memory-efficient. It is clear that primal structure
is a compressed form of tidset and the compression ratio depends on the base prime
set size, |G|. In the previous example, where G is the first four primes, p(AB)
achieves 50 % compression on the corresponding tidset t(AB)−|p(AB)| = 2 whereas
|t(AB)| = 4. Alternatively, if we choose G to be the first eight primes, then p(AB) =
{858} achieves about 75 % compression on t(AB). Generally, we can achieve up to
10|G|% compression ratio on tidsets. Unfortunately, |G| is bounded by the memory
size allowed for each integer on the computer system. Moreover, 10|G|% reduction
ratio is possible at the beginning of the encoding process, i.e., with initial primal
structures, and it decreases upward until, in the worst case, the primal structures
hold the same size as if tidsets were used, and this of course will be at the end of
mining.

Even with small G we can keep the initial compression ratio across all search
tree levels by applying the concept of re-encoding. The main issue here is that
re-encoding is performed given primal structures, not tidsets or bitmaps. Naive re-
encoding works by first joining the corresponding primal structures on the fly and
decoding each generated element to its corresponding tids while joining, in order to
decide their positions at the corresponding prefix tidset; then follows the method
presented at optimization 2 to re-encode. Consider for example re-encoding while
joining p(A) with p(B) given in Table 4. Joining p(A) with p(B) on the fly yields
p(AB) = {14, 7, 2}; decoding its elements 14, 7 and 2, we get the positions 1, 2, 5
and 6 at t(A), respectively, where the positions 1 and 2 correspond to the element 14.
Then by encoding these positions we get p(AB) = {6, 6}.

The main problem with naive re-encoding is that the cost of decoding elements
to their corresponding tids and then re-encoding would be expensive than joining
the original tidsets. The adopted re-encoding methodology works by deciding for
each prefix primal structure what is called the encoding regions : the ranges on prefix
primal structure for which the total number of tids corresponding to primal entries
are at most |G|. These encoding regions are collected in a prefix offset array. This
array guides re-encoding while joining the prefix primal structure with every primal
structure in its equivalence class. Consider re-encoding p(AB) according to this
method. There are two encoding regions of p(A), where the first region is given
by the element 14 and the second is given by the two elements 70 and 2, since the
element 70 has corresponding 3 tids and 2 has only one corresponding tid; these
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four tids represent a region to be re-encoded into one new element while joining.
While joining p(A) = {14, 70, 2} with p(B) = {210, 21, 2}, the first element is joined
without re-encoding to get 14 whereas the second and third elements are joined and
then re-encoded. Joining 70 with 21 and 2 with 2 yield the elements 7 and 2, since
these elements are at the third and fourth positions of the encoding region, these
two elements are encoded into the element 35, then the resulting structure becomes
p(AB) = {14, 35}.

The question arising here is: Does the benefit of using the encoded primal struc-
tures outweigh the cost for re-encoding at every tree node? Re-encoding guarantees
that every generated primal structure will be of size at most dsup(X)/|G|e, where
X is the prefix itemset. This shows a good memory saving. However, re-encoding
at every tree node may affect algorithm speed. In order to weigh up memory sav-
ing and speed, we use an adaptive approach to determine when to re-encode. At
each node, we estimate the prefix primal structure size relative to prefix support.
When that ratio reaches some threshold, re-encoding is chosen for that node and
the subtree rooted at that node.

3.2 Auxiliary Data Structure

In our implementation of the primal encoding method, joining is performed very fast
using a collection of pre-computed, and compact, lookup tables. Since computing
the gcd is the prominent operation while joining primal structures, we use a pre-
computed table called GCD to facilitate rapid gcd computations. Note that in
our examples above, we used G as the first four primes. However, in our actual
implementation, we assume |G| = 8, i.e., G = {2, 3, 5, 7, 11, 13, 17, 19}. Note that
with the new G, the largest element in ⊗P (G) is 9699690. In total there are | ⊗
P (G)| = 256 possible elements.

In naive implementation, the GCD lookup table can be stored as two dimension
array with cardinality 9 699 690 × 9 699 690, where GCD(i, j) = gcd(i, j) for any
two integers i, j ∈ [1 : 9 699 690]. This is clearly inefficient, since there are in
fact only 256 distinct elements in ⊗P (G), and we thus really need a table of size
256× 256 to store all the gcd values. We achieve this by representing each element
in ⊗P (G) by its rank, as opposed to its value [10]. For example, suppose the
ranks of the two elements 210 and 42 in the set ⊗P (G) are 15 and 12, respectively.
Then, gcd(15, 12) = 12 is equivalent to gcd(210, 42) = 42. Since rank ∈ [0 : 255],
this representation brings down the storage requirements of the GCD table to just
256 × 256 = 65 536 bytes. The primal structures entries are also represented by
element rank which greatly enhance storage requirement of this format.

Other lookup tables. To speed up support determination, P Eclat maintains
a one-dimensional lookup array called CARD to store the number of prime factors,
i.e., factor-cardinality for each element in the set ⊗P (G). That is, for each x ∈
⊗P (G), we store CARD(rank(x)) = ‖x‖G. For example, since ‖42‖ = 3, we have
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CARD(rank(42)) = CARD(12) = 3. To speed up re-encoding, another three-
dimensional lookup table called Common Facts is used. Common Facts stores for
each two elements in ⊗P (G) the locations of common factors to both elements.

4 RELATED WORK

Mining Frequent Itemsets problem was introduced in [2]. The extensive research
performed on this problem has led to an abundance of algorithms. Each algorithm
typically consists of two interleaved steps, namely generation of itemsets and fre-
quency testing. In most algorithms, generation is done by using one of the itemset
tree traversals: depth-first or breadth-first. The existing methods essentially differ
in the data structures used to “index” the data to facilitate fast enumeration.

Two popular vertical and horizontal data representations are adopted. In ver-
tical representation, each item is associated with an inverted index called tidset or
bitmap. Frequency counting is done via joining operations on tidsets or bitmaps. On
the other hand, in horizontal representation, the data transactions are not indexed
at all, itemset frequency is determined by directly checking in which transaction the
itemset appears [2]. Data projection, which is a hybrid between the horizontal and
vertical representation, is introduced to accelerate the counting process of horizontal
algorithms [5, 11, 14].

In sparse domain, the main topic of this paper, where the original and inter-
mediate relevant data are very small, the horizontal approach with projection and
vertical tidset format seem to be suitable, since tidset joining offers natural prun-
ing of irrelevant data and the projected data becomes ever smaller. However, since
projection requires the original data to be in memory, the horizontal approach does
not scale to large sparse data sets with large transaction size.

Even though bitmaps use bits to represent information and simple bitwise AND,
the ANDing operation does not affect the bitmap size. Hence, the vertical bitmap
approach suffers from the problem of sparseness of the bitmaps especially at lower
support levels. Data projection is also used in order to compress bitmaps [8], which
makes the bitmap-based approach competitive for mining sparse data as well. Ne-
vertheless, the additional memory required to hold the original data set as in the
horizontal approach bounds the applicability of the vertical bitmap approach to only
small data sets [7, 8].

5 EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of P Eclat algorithm on sparse, syn-
thetic data sets. P Eclat is implemented with the three optimizations given in
Section 3 in standard C++ and compiled with GNU GCC. All experiments were
performed on a 3GHz dual Core PC with 4G memory running Linux.

Data Sets: We chose several sparse, synthetic data sets for testing the performance
of P Eclat. Synthetic data sets are generated using the IBM data generation
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program [3]. There are several factors that we considered while comparing al-
gorithms on synthetic data sets. All of these factors can be specified as parame-
ters when running the generation program. For example, a transaction data set
T10I4D100k means that the data set contains 100 k transactions; the average
number of items per transaction is 10; and the average number of items within
the maximal itemsets is 4. The number of items |I| is set to 1 000 in all data
sets unless mentioned otherwise.

5.1 Performance Study

To evaluate the P Eclat algorithm, experiments are conducted to compare it with the
state-of-the-art horizontal and vertical frequent itemset mining algorithms like FP-
growth [11] and Eclat [19]. The codes/executables for these methods were obtained
from their authors. Two versions of P Eclat are used in the comparisons: P Eclat-
opt2 is the P Eclat algorithm with optimization 2, and P Eclat-opt3 is the algorithm
with optimizations 2 and 3.

Figures 2 and 3 shows the results for the data sets where all four methods can
run for at least some support values. P Eclat-opt3 shows the best performance on
most data sets. The only exception is for the data set T10I4D100k where FP-growth
outperforms other methods. For small data set like T10, the initial overhead needed
to set up and use the vertical representation in some cases outweighs the benefit
of faster counting, and because of this FP-growth runs slightly faster for this small
data set. However, for all other data sets which are characterized by higher values
of the parameters T and I, the performance of FP-growth degrades sharply to the
limit that it fails to run on our machine on very small support values. On the
contrary, P Eclat-opt3 performance is less sensitive to these parameters. P Eclat-
opt3 outperforms FP-growth by more than one order of magnitude on the data set
T80I4D100k, and outperforms Eclat by more than three times on both T40I10D100k
and T80I4D100k. You can also note that P Eclat-opt3 outperforms P Eclat-opt2
for all data sets. This confirms the benefit of re-encoding on the performance of
P Eclat.

Figure 4 shows the performance on the data sets T40I16D100k and T120I4D100k.
These data sets are characterized by larger values of T and I. FP-growth is not
shown because it fails to run on our machine for the given minsup values because
its memory consumption is well beyond the physical memory available (4 GB), and
thus the program aborts when the system runs out of memory. Eclat and P Eclat-
opt2 also fail to run for the same reason for smaller minsup values (< 0.001) on the
data set T40I16D100k and (< 0.03) on the data set T120I4D100k. P Eclat-opt3
outperforms Eclat by more than four times on the larger data set T120I4D100k.
This result proves the advantage of the primal encoding method with re-encoding
over the tidset approach in terms of memory and speed.

Scalability: Figures 5 and 6 shows the scalability of the different methods when
we vary the different data set parameters. The basic values used are as follows:
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Figure 2. Comparative performance: FP-growth, Eclat
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Figure 3. Comparative performance: P Eclat-opt2, P Eclat-opt3
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Figure 5. Scalability with different data parameters
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T = 40, I = 4, and D = 100 k. We vary a single parameter at a time, keeping all
others fixed to the default values. Figures 5 and 6 shows the effect of increasing
the number of transactions from 100 k to 300 k, the effect of increasing the
average transaction size from 10 to 120, and the effect of increasing the the
average number of items within the maximal itemsets from 4 to 20. P Eclat-
opt3 scales gracefully. It shows the best performance in all experiments. The
performance gain on different data set parameters is consistent with previous
experiments.

6 CONCLUSIONS

Mining Frequent Itemsets (MFI) is a fundamental and essential problem in many
data mining applications. The vertical approach is one of the successful data re-
presentations adopted for MFI problem. In this paper, the Prime-block Encoding
method [10] is used with the vertical MFI algorithms. New optimizations and a re-
encoding method are also presented. The experimental evaluation shows that Prime-
block Encoding based vertical itemset mining is suitable for high-dimensional sparse
data.
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